
Left Wall Follower
A Solution To Escape the Maze

Jeff Pang Liu



Solution Introduction

• The solution is a suboptimal solution, though it can escape the 
maze in our assignment in almost 100%, but it might not solve 
all maze problems.



Algorithm Introduction - Sensor Base

• The algorithm is based on two data points:
• 1. The front side scan between -15 to 15 

degrees, to find if there is an obstacle in front
• 2. The left side scan between 45 to 135 

degrees, to find the closest distance to the 
left side, and the degree of that closest 
distance.



Algorithm Introduction - Logic

• If there is an obstacle in front:
• If the state of left turning is True: Turn Left
• Else: Turn Right

• Else:
• If the robot is in the dead zone, turn right
• If the robot is between the dead line and the keep line, move toward 

the keep line
• If the robot is between the keep line and the bound line, move toward 

the keep line
• If the robot is outside the bound line, move straight to find the wall in 

the left side



Algorithm Introduction - Obstacle

• Note: This is a state 
storage variable



Algorithm Introduction - No Obstacle



Codes Introduction

class LeftWallFollower:
• def __init__(self)
• def clst_dtc_and_dir(self, start_degree, end_degree)
• def scan_cb(self, msg)
• def follow_left_wall(self)

• 1. set velocity, three area divided
• 2. main algorithm (Bang Bang Control)















Test Results

• Test: 10 Times, in different positions
• Successfully Escape Rate: 100%

• In Perfect Route: 60%
• In Not Perfect Route: 40% (But still escape the maze!)

• The result represents this algorithm is an suboptimal solution, it 
can tolerant fault, with robustness.



Fault Tolerance

• There are two situations the robot will not follow the perfect 
route, but not influence the result:

• 1. In dead end with three walls, turn left with state True, but it will not 
influence the escape of dead end because that state will eliminate 
when it toward the wall again.

• 2. In the small room at the exit, sometimes the robot detect the wall as 
an obstacle, then escape the maze directly, without entering the small 
room. This is not crucial in this maze, and I don’t fix it because the 
sensor accuracy is not good, and the data less than 0.1 meters is not 
very accurate, so I can't make the robot walk close to the wall. To 
solve this fault, I will explain the complete solution in the next slide.



(Abandoned Solution)

• At fisrt, I try to use more data points. 



(Abandoned Solution)

• Right picture is the version that I try to use four 
directions...

• Also, use too much data points can cause logic very 
chaos, I have a 300 lines code with four directions 
detection version, but finally I didn’t use it because it 
is really hard to modify the codes. So after several 
times’ effort, I finally achieve the goal of only use 
two directions’ detection!

• The behavior is even worse than the final version of 
two directions’ detection.

• This makes me realize the importance of simplicity.



Thanks!


