Left Wall Follower

A Solution To Escape the Maze
Jeff Pang Liu

Solution Introduction

* The solution is a suboptimal solution, though it can escape the
maze in our assignment in almost 100%, but it might not solve
all maze problems.

Algorithm Introduction - Sensor Base

* The algorithm is based on two data points: 7—; (foyont oo
 frnt
* 1. The front side scan between -15 1o 15 N
degrees, to find if there is an obstacle in front \;\ i
» 2. The left side scan between 45 to 135 b7 r)r

left side, and the degree of that closest

degrees, to find the closest distance to the Lt "‘\[# e
distance.

Algorithm Introduction - Logic

* If there is an obstacle in front:
* |f the state of left turning is True: Turn Left

 Else: Turn Right

* Else:
* |f the robot is in the dead zone, turn right
* |If the robot is between the dead line and the keep line, move toward

the keep line
* |f the robot is between the keep line and the bound line, move toward

the keep line
* |f the robot is outside the bound line, move straight to find the wall in

the left side

Algorithm Introduction - Obstacle

Trae , LNUNVE _wm \Z?(t

obstDkC[E dﬁg?/; iy ///
r ' Turn Lgﬂ tete
1N e Y ht j /
tore
ﬂ 7777777, // the
/ stte
&
closest 7 /
/
/
-
r
4

- Note: This is a state - irecti /
storage variable | 770

| r

[ot lﬁ"‘“)g

Algorithm Introduction - No Obstacle

—_ o N N e =

-
- et N S o B =

~ N~ N

NSNS N TN O o~

G m i e e R
; g i
, 2L
< >
N
NN~ N

Codes Introduction

class LeftWallFollower:

« def __init__(self)

 def clst_dtc_and_dir(self, start_degree, end_degree)
» def scan_cb(self, msg)

» def follow_left_wall(self)
* 1. set velocity, three area divided
« 2. main algorithm (Bang Bang Control)

O 00NN A WN B

NN R R R R R R R R R
R ® WO NOOU A WNROS

J
J

#!/usr/bin/env python3

import math

import rospy

from sensor_msgs.msg import LaserScan
from geometry_msgs.msg import Twist

BANG BANG CONTROL
class LeftWallFollower:
def __init_ (self):
Initialize the publisher and subscriber
Initialize the data points p, and the state of turning left
self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1)
self.scan_sub = rospy.Subscriber('/scan', LaserScan, self.scan_cb)

Store all lidar data, use scan_cb() to get and refresh data points
self.p = [9.9] % 360

State of Left Turning: This value is True If and Only If in Turning
self.turn_left_state = False

def clst_dtc_and_dir(self, start_degree, end_degree):

Find the closest distance and direction

min_dtc = self.plstart_degree]
min_dir start_degree
for i in range(start_degree, end_degree):
if min_dtc > self.pli]:
min_dtc = self.plil
min_dir = i
return min_dtc, min_dir

def scan_cb(self, msg):

Scan and get the Lidar data, and store in the list p

degree = 0
for i in range(0,360):
if msg.ranges[degree] == float('inf') or msg.ranges[degree] == 0.0:
self.p[i] = 9.9 # 9.9 means infinite
else:

self.p[i] = msg.ranges[degreel
degree += 1

def follow_left_wall(self):

The Algorithm of Following the left_side: (Bang Bang Control)

1. If there is no obstacle in front, follow the left side wall, and keep the
1-1. If the distance is less than dead distance, move toward keep line (n
1-2. If the distance is between the dead line and the bound line, move t¢
1-3. If the distance is larger than bound line, move straight to find a v

2. If there is an obstacle in front:
2-1. If the left turn state is not true, turn right.
2-2. If the left turn state is true, turn left.

twist = Twist()

left_clst_dtc, left_clst_dir = self.clst_dtc_and_dir(45,135)
common use speed

lvs = 0.2

avs = 0.2

av = avs *x 3

area divided

dead = 0.2
keep = 0.3
bound = 0.5

obstacle detect, the range is -15 to 15 degrees

obstacle_left_detect_dtc, obstacle_left_detect_dir = self.clst_dtc_and_dir(0,
obstacle_right_detect_dtc, obstacle_right_detect_dir = self.clst_dtc_and_dirl
obstacle = True if obstacle_left_detect_dtc < keep or obstacle_right_detect_c

BANG BANG CONTROL
it obstacle:
print("Obstacle In Front")
if self.turn_left state == True:
twist. linear.x = 0
twist.angqular.z = av
self.turn_left state = True ;
else:
twist. linear.x = 0
twist.angular.z = —av
self.turn_left state = False

else:

DEiF Vo Ubstacle In Fro

if left_clst_dtc < dead:

twist.linear.x = lvs
twist.angular.z = -avs
e turn_left ate = False print("Trying to move along the Keep |

_clst_dtc < keep:
if left_clst_dir < 70: # 70 is a special number, med

twist.linear.x = 1lvs

twist.angular.z = -avs

self.turn_left_state = False ; print("Trying to move along thy Ke
elif left_clst_dir > 90: # 9@ is the degree of normal left, larger)tt

twist. linear.x = lvs

twist.angular.z = av

self.turn_left_state
else:

twist. linear.x = 1lvs
istiangular.z = 0
self.turn_leTT_sta
elif left_clst_dtc < bound:
if left_clst_dir < 90: # 90 is the degree of normal left, smaNler th:

twist. linear.x = 1lvs

twist.angular.z = av

self.turn_left_state
else:
twist.linear.x = lvs
twist.angular.z = av % 2
self.turn_te ate— ae ; print("Left S\de Disapear, Turn Lef

the direction

2
True ; print("Left Side Disapear, T

*

n Let

alse ; print("Trying

o~love along the Ke

the Kée

False ; print("Trying to move along

else:
twist.linear.x = lvs
twist.angular.z = 0
elf.turn_left_state = False ; prir No obstacle, No left side wall,

120
121
122
123
124
125
126
127
128
129
130
131
132
133

PUBLISH THE TWIST
self.cmd_vel_pub.publish(twist)

if _name_ == ' main__':
rospy.init_node('LeftWallFollower")

LeftWallFollower = LeftWallFollower()

rate = rospy.Rate(10)

while not rospy.is_shutdown():
LeftWallFollower.follow_left wall()
rate.sleep()

Test Results

» Test: 10 Times, in different positions

» Successfully Escape Rate: 100%
* In Perfect Route: 60%

* In Not Perfect Route: 40% (But still escape the maze!)

* The result represents this algorithm is an suboptimal solution, it
can tolerant fault, with robustness.

Fault Tolerance

* There are two situations the robot will not follow the perfect
route, but not influence the result:

* 1. In dead end with three walls, turn left with state True, but it will not
iInfluence the escape of dead end because that state will eliminate
when it toward the wall again.

e 2. In the small room at the exit, sometimes the robot detect the wall as
an obstacle, then escape the maze directly, without entering the small
room. This is not crucial in this maze, and | don’t fix it because the
sensor accuracy is not good, and the data less than 0.1 meters is not
very accurate, so | can't make the robot walk close to the wall. To
solve this fault, | will explain the complete solution in the next slide.

(Abandoned Solution)

* At fisrt, | try to use more data points.

Lenear. X I
e fvf ot o 5Tt

STEP 2 :
else
SITUATION A' The left side is in the dead line
if self.left_closest_distance < self,dead_distance:
print(* ITUATION A: LEFT IN DEA)

if self.front_normal_distance > self.boundry_distance:
] print("A-1: IF NO OBSTACLE ON THE FRONT, THEN MOVE FOWARD")
if self.left_closest_dir < 105:
print("A-1-1: THE DIRECTION IS GOOD, KEEP GOING\A")
twist, linear.x = lvs

twist.angular.z = @
else:

BANG BANG CONTROL to move along the left side wall

print("A-1-2: THE DIRECTION IS NOT GOOD, TURN A LITTLE BIT RIGHT AND KEEP GOING\n")
twist, linear.x = lvs

twist.angular.z = -avs

elif self.left_closest_dir < 100:
IF OCCURS FRONT OBSTACLE, AND LEFT DIR < 10@;
'<100@' means the robot is not toward the keep line,

and use 100 because the sensor is not really precise especially when the robot is very close to the wall

print("A-2: WHEN THE ROBOT IS NOT TOWARD THE KEEP LINE")

if seLf.ngr\t,cLasestJutance < self.dead_distance and self.back_closest_distance < self.dead_distance and
this if statement means the robot is trapped in a very narrow space
the condition is: right, back, left sides are walls, only front is not wall
again, use rospy.sleep for 1 second is because in narrow space, the sensors are not precise

L] L] L] L] # to avoid sensors up and down frequently, just let the robot toward the front and go for 1 second
* Right picture is the version that | try to use four o L A A

twist, linear.x = s

twist.angular.z = @
self.cnd_vel_pub.publish(twist)
" "
rospy.sleep(1)
I reC I O S e
I l LI

print{["A-2-2: THE ROBOT| 15 NOT IN THE TRAP, SO IT SHOULD MOVE NEAR TO THE KEEP LINE"])

if self.front_normal distance > self.keep_distance and self.right_normal_distance > self.keep_distance
print(“A-2-2-1: Straighten the front of the car")
twist.linear.x = lvs

. . twist.angular.z = - avs / 2 # In this special case, needs very slow rotate
* Also, use too much data points can cause logic very =ttt

print("A-2-2-2: The front of the car straightened, but hit the wall and stuck at the wall")
move back and turn right, to solve the stuck situation

chaos, | have a 300 lines code with four directions i

print("A-2-2-3: The front of the car is straightened, and not stuck”)

detection Version, but flna”y I dldn,t use |t because |t Snaman -

else:

print("A-2-2-4: Get out of trouble by move back and turn right")

is really hard to modify the codes. So after several

elif self,left_normal_distance » self.dead_distance:
print("A-2-3: Suddenly nothing on the leftin\n")

times’ effort, | finally achieve the goal of only use e

else:

print("A-2-4: In all other cases, move left to correct the error.\n\n")
Errors includes all other cases, which are not what we concerned as "wall on the left and move toward rig
. " b) . twist. Linear.x = lvs
wo directions’ detection
L]
SITUATION B: The left closest distance is between dead line and keep line

elif self,left_closest_distance < self.keep_distance:
print(*

» The behavior is even worse than the final version of e

twist, Linear.x
twist.angular.z

elif self.left_normal_distance » self.keep_distance:
[[l y] print("8-2: Nothing on the left, turn left to find the left wall.\n\n")

twist, Linear.x = lvs

twist.angular.z = av * 2 # This is to help move quickly to the right path
else:

print("B-3: Already toward the keep line, keep moving.\n\n")

twist, Linear.x = lvs

« This makes me realize the importance of simplicity.

SITUATION C: Closest Left Distance is between KEEP LINE and BOUNDRY LINE
elif self,left_closest_distance < self.boundry_distance:
print(*

ITUATION C: LEFT BETWEEN KEEP AND BOUNDR
if self.front_closest_distance < self.keep_distance:
print("C-1: The front wall occurs")
When the front wall occurs,

The robot can turn left or right based on different conditions
if self.right_normal_distance < self.boundry_distance:
print("C-1-1: Right wall exists, so not turn right")
if self.front_closest_distance < self.dead_distance:
print("C-1-1-1: Very close to the front wall, move back and turn left")
twist, linear.x
twist.angular.z

elif self.right_closest_distance < self.keep_distance:
print("C-1-1-2: Very close to the right wall, turn left to avoid collision")
twist, linear.x = lvs
twist.angular.z = av
else:
print("C-1-1-3: Move forward")
twist, linear.x = lvs

Thanks!

